- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ferrario, Francis (1)
-
Matuszek, Cynthia (1)
-
Wen, Ruchen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To support positive, ethical human-robot interactions, robots need to be able to respond to unexpected situations in which societal norms are violated, including rejecting unethical commands. Implementing robust communication for robots is inherently difficult due to the variability of context in real-world settings and the risks of unintended influence during robots’ communication. HRI researchers have begun exploring the potential use of LLMs as a solution for language-based communication, which will require an in-depth understanding and evaluation of LLM applications in different contexts. In this work, we explore how an existing LLM responds to and reasons about a set of norm-violating requests in HRI contexts. We ask human participants to assess the performance of a hypothetical GPT-4-based robot on moral reasoning and explanatory language selection as it compares to human intuitions. Our findings suggest that while GPT-4 performs well at identifying norm violation requests and suggesting non-compliant responses, its flaws in not matching the linguistic preferences and context sensitivity of humans prevent it from being a comprehensive solution for moral communication between humans and robots. Based on our results, we provide a four-point recommendation for the community in incorporating LLMs into HRI systems.more » « less
An official website of the United States government

Full Text Available